
OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

VSG Technical Report
OSMIA-01

Project OSMIA: Open Source Medical Image Analysis
EU Fifth Framework Programme
(IST: Accompanying Measures)

Project number IST-2001-34512
Deliverable number D4.1 (i)
Revision 2

Report Title Integration of TINA C libraries and the

NeatVision Development Environment

Associated Software aorta_tracker_example.tar.gz
example.tar.gz
seq_reader_example.tar.gz

Prepared by Dr. Naser Prljaca

Approved / Edited by Prof. Paul F Whelan

Distribution List OSMIA project members

Date June 2002

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

Contents

1. Motivation
2. Java Native Interface
3. Use of an Interface Library
4. Function prototype from the TINA C Library (Example, linear equations

solver)
5. Declaring the native function in our Java program
6. Compiling the Java program
7. Generating a header file for use by C
8. Implementing the native function in C code using TINA C library
9. Building the shareable library
10. Running the program
11. Quick summary of how to build the linear equations solver from TINA library
12. General considerations of calling Tina C library functions from Java
13. NeatVision development environment
14. Integration of TINA sequence tool and the NeatVision environment
15. Integration of TINA aorta tracking tool and the NeatVision environment
16. Integration of TINA NMR segmentation tool and the NeatVision environment

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

 1. Motivation

TINA [1] has been written to provide a research environment for the machine
vision software developers. It consists of a powerful set of C libraries to
support algorithms and software development such as: basic system libraries,
math libraries, image/geometry processing libraries and user interface and
interactive graphics libraries under X Windows system.

TINA assessment

Our experiences in using the TINA open source software can be summarised
as follows:

- TINA distribution package and installation instructions are good. We were
able to install and run TINA without any problem under SUN Solaris

- Distribution and installation of TINA high level applications such as medical
and machine vision applications went smoothly under SUN Solaris.

- The installation and compilation of TINA libraries under Linux (Red Hat)
was successful accompanied by numerous compiler warnings

- The tinatool template application works but for some reason cannot
close

- Some of the TINA medical and machine vision high-level applications do
not work properly (ie they crash or do not work as expected) on Linux (e.g.
Image co registration tool, Stereo tool)

- We have also noticed some conflicting function declarations and function
definitions (for example pgh_model.c is conflicting with pgh_funcs.h)

- TINA templates are very useful for quick start up
- In general, distribution bundles and accompanying installation files are

informative enough for new users to have TINA up and running on their
machines

- TINA user’s guide is useful
- TINA programmer’s guide is modest
- TINA algorithmic guide is useful
- TINA source libraries are organised and structured well taking into account

overall TINA architecture
- Unfortunately the source code is not well documented
- As a conclusion, the key disadvantage associated with learning and using

TINA is lack of suitable documentation regarding TINA functions, data
structures and algorithms

On the other hand the NeatVision [2] has been written in Java as a user-
friendly package to support teaching and development of machine vision
techniques and algorithms. The system support intuitive visual programming
and is easily extendable by the end user developer

This work attempts to expose some of the TINA functionality to the NeatVision
development environment [3]. Effectively this task can be reduced to the
problem of calling C functions from Java.

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

2. The Java Native Interface

The Java Native Interface (JNI), which comes as part of the Java
Development Kit (JDK), gives compile- and run-time support enable
developers to call native code from a Java program. By native code, we mean
non-Java code, typically C or C++; in this report we will assume C.

At compile time, the JNI defines the way that Java data types correspond to C
data types – C programs get this information from JNI header files that come
with the JDK. A tool, javah (supplied with the JDK) aids in creating application-
specific header files which aim to eliminate mistakes in communication
between Java and C routines.

At run time, the JNI allows the passing of Java objects to the C code, and
allows the C code access to Java properties and methods. Thus, for example,
the C code can set properties of Java classes, and it is possible to call a Java
method from C.

A good introduction to the Java Native Interface can be found at the Sun
Microsystems Java Tutorial web site [4].

3. Use of an interface library

Use of the JNI entails creation of an intermediate shared library (on UNIX
systems) or DLL (Microsoft Windows systems). This library acts as the
interface between the Java code and the TINA C Library code.

The interface library is required because when a native method (i.e. function
or subroutine) is called from Java, extra arguments are appended to the
argument list of the native routine being called. These extra arguments give
the native code access to Java methods and properties, but of course the
TINA C Library was not designed to handle these arguments. Furthermore,
the types of the arguments passed from Java do not always correspond
exactly to standard C types, and so the TINA C Library cannot use them
directly. The interface library must handle these issues, make its own calls to
the TINA Library, and then send the results back to Java.

The Java Native Interface as a link between Java and C libraries

Implementation of a call from Java to the TINA C Library is a three-stage
process

• Write a declaration, in Java, for the native method. This declaration will
include the keyword native to signify to the Java compiler that it will be
implemented externally.

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

• Create a header file for use by the native (C) code. This header file
contains the declaration of the native method as viewed by the C
compiler, i.e. it includes the extra arguments required for the C function
to access Java methods and properties, and also has argument types
defined in terms of standard C types.

• Implement the native method in C. This function will use the header file
created above, make calls to the TINA C Library and possibly back to
Java methods, and return results to Java. The C code is compiled to
build the interface library.

When the interface library has been built, the Java code that uses it is still
machine-independent even though the interface library is not. Thus, we need
to build the interface library on all platforms that we are interested in, but we
do not have to edit or rebuild the Java code that uses it.

4. Function prototype from the TINA C Library (Example)

The process of creating an interface library is most easily understood by
demonstration. Here, we give an example.

According to the TINA C Library Manual, the prototype function is illustrated
below:

#include <tina/all_tina.h>
Vector *x matrix_solve(Matrix *A , Vector *b);

The function is designed to solve the set of n linear equations A x = b, where A
is an n by n matrix, and b and x are vectors of length n. The matrix A an
vectors b and x are stored in Tina user defined data types Matrix and Vector
respectively.

5. Declaring the native function in our Java program

In our Java program, we will declare the function as follows:

 // Declaration of the Native (C) function
 private native void solve_equations (int n,
 double A[], double b[], double x[]);

The reason we declared the new C function in our Java program instead of
the function declared in Tina C library is due to the fact that Java does not
recognise C user defined data types.

Although the matrix A is two dimensional, we choose to store it in a one-
dimensional Java array of type double[]. This makes the Java code slightly
harder to read than it would be otherwise, because we need to deal with array
subscripting, but it makes the C code that we need to write in the interface
library much simpler.

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

6. Compiling the Java program

Here is the complete source code of our Java program tina.java

public class tina
{
 //Declaration of the native C function
 private native void solve_equations(int n,
 double aa[], double bb[], double xx[]);
 static
 {
 System.loadLibrary("JCtinamath");
 }
 public static void main(String [] args)
 {
 double aa[], bb[], xx[];
 int n = 10;
 tina lineq = new tina();
 aa = new double[n*n];
 bb = new double[n];
 xx = new double[n];
 int k;
 for(k = 0; k < n; k++) {
 aa[k*(n+1)] = 4.0;
 bb[k] = -1.0;
 }
 System.out.println("Call of TINA linear equation
 solver routine");
 lineq.solve_equations(n, aa, bb, xx);
 int i;
 for(i = 0; i < n ; i++) {
 System.out.println(" " + xx[i]);
 }
 }
}

We compile our Java program with the command

% javac tina.java

7. Generating a header file for use by C

Having compiled tina.java, we can use the javah utility to create a C header
file:

 % javah -jni tina

The generated header file, tina.h, contains this function prototype:

 JNIEXPORT void JNICALL Java_tina_solve_equations
 (JNIEnv *, jobject, jint, jdoubleArray,jdoubleArray,
 jdoubleArray);

As before, from the C point of view, our function has two extra arguments: the
Java environment pointer and the Java object.

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

8. Implementing the native function in C code

Now that we have created the header file tina.h, we can write our C code
implementation of solve_equations as follows:

#include <jni.h>
#include "tina.h"
#include <tina/all_tina.h>

JNIEXPORT void JNICALL Java_tina_solve_equations
 (JNIEnv *env, jobject obj, jint n, jdoubleArray aa, jdoubleArray
bb, jdoubleArray xx)

{
 Matrix *a;
 double **c;
 Vector *b, *x;
 double *d;
 int i, j;

 jdouble *apt;
 jdouble *bpt;
 jdouble *xpt;

 /*JNI data transfer calls */

 apt = (*env)->GetDoubleArrayElements(env, aa, 0);
 bpt = (*env)->GetDoubleArrayElements(env, bb, 0);
 xpt = (*env)->GetDoubleArrayElements(env, xx, 0);

 /*internal Tina data operation */

 a = (Matrix *)matrix_alloc(n, n, matrix_full,
 double_v);
 c = a->el.double_v;
 b = vector_alloc(n, double_v);
 d = b->data;

 for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++) {
 c[i][j] = apt[i*n +j];
 d[i] = bpt[i];
 }
 }

/* call to Tina function */

 x = matrix_solve(a, b);
 d = x->data;

 for(i = 0; i < n; i++) xpt[i] = d[i];

 /*End of Tina operation */
 /* JNI data transfer calls */

 (*env)->ReleaseDoubleArrayElements(env,aa, apt,0);
 (*env)->ReleaseDoubleArrayElements(env,bb, bpt,0);
 (*env)->ReleaseDoubleArrayElements(env,xx, xpt,0);

 /* JNI end of transfer*/
}

Points to note:

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

• As before, we must include the appropriate Tina C Library header files
• We cannot access the elements of array arguments aa, bb and xx

directly, because they are not C-style arrays but rather Java-style
arrays of type jdoubleArray. Trying to access the array elements directly
would lead to catastrophe. Instead, we must convert them to C-style
double arrays, using the JNI function GetDoubleArrayElements. This
function is declared in the JNI header file jni.h as follows:

 jdouble * (JNICALL *GetDoubleArrayElements)
 (JNIEnv *env, jdoubleArray array, jboolean
 *isCopy);

GetDoubleArrayElements is accessed through the JNIEnv pointer,
*env. Given the array of type jdoubleArray, it returns a pointer to an
array of elements of type jdouble, which can safely be manipulated by
C. The output argument isCopy tells us whether Java made a copy of
the array, or just passed us a pointer to the elements in situ. This is not
of interest to us at this stage.

Our C program therefore makes three calls of
GetDoubleArrayElements, one for each array argument. The returned
pointers are passed directly to the C function solve_equations which in
turn calls Tina C library function matrix_solve after argument
preparations.

• After return from the Tina Library, we need to tell Java that we are
finished with the array pointers that it gave us. We therefore make three
calls of function ReleaseDoubleArrayElements, declared in jni.h as

 void (JNICALL *ReleaseDoubleArrayElements)
 (JNIEnv *env, jdoubleArray array, jdouble *elems,
 jint mode);

We need to do this for two reasons: to ensure that our results get
copied back to the appropriate Java arrays, and so that Java garbage
collection can work properly (if we did not do it, Java might leak the
memory that it allocated for us).

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

9. Building the shareable library or DLL

This step is operating-system dependent.

Building on Linux (Solaris)

% gcc -c -I/usr/java/jdk1.3.1_03/include \
 -I/usr/java/jdk1.3.1_03/include/linux \
 -I/home/prljacan/Tina/include tina.c

% ld -G tina.o -o \
 libJCtinamath.so \
 -L/home/prljacan/Tina/lib-linux –ltinamath –ltinasys\
 –lc –lm

10. Running the program

Assuming that all has gone well, we can run the program using the command

 % java tina

11. Quick summary of how to build the Tina linear equation solver

Given the two source files tina.java and tina.c issue the following commands:

Compile the Java class:

 % javac tina.java

Create the header file:

 % javah -jni tina

Compile and build interface library:
(Linux/Solaris)

% gcc -c -I/usr/java/jdk1.3.1_03/include - \
 I/usr/java/jdk1.3.1_03/include/linux \

 -I/home/prljacan/Tina/include tina.c

% ld -G tina.o -o libJCtinamath.so \
/home/prljacan/Tina/lib-linux –ltinamath \
-ltinasys – lm – lc

where

/usr/java/jdk1.3.1_03/include, /usr/java/jdk1.3.1_03/include/linux,
/home/prljacan/Tina/include and /home/prljacan/Tina/
 lib-linux

are directory names appropriate to your Java and TINA library installations.

Above example files are available as: example.tar.gz

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

12. General considerations of calling Tina C library functions from Java

In the previous section the steps necessary to call C functions from the Java
program (Java Native Interface Methods) were presented. In the case of Tina
C library calls, the following things should be highlighted:

• Tina library consists of tens of user defined data types relaying heavily
on pointers and dynamic memory allocation

• Tina library consists of hundreds of low-level to high-level functions,
with parameters ranging from primitive data types to function pointers

Regarding JNI the following things must be highlighted:

• Primitive date types of Java and C (int, float,...) get passed from-to
Java-C in one to one correspondence

• One-dimensional arrays of primitive data types also get passed in one
to one correspondence by the help of a few JNI methods accessible to
C code. This allows fast access to Java arrays from C code which does
not differ from C access to its own arrays

• For more complex data types such as Java objects and arrays of
objects, JNI methods gets much more complex and slower. For
example, in order to access an java object, C code must at first access
the object itself, then it must access each member using separate JNI
method and member signature

As a conclusion JNI works at its highest when a called C function has
parameters consisting of primitive data types and one dimensional arrays of
primitive data types.

If one is bound to develop shareable Tina library which would expose all Tina
C functions (as it is) to Java code it will mount to a huge amount of manual
wrapping code for almost each C function and user defined data types in the
library, since this process due to big number of user defined data types and
various function signatures can not be easily automated.

For example, the following are some of the matrix manipulation functions
provided by the Tina library (out of 157)

 1 extern Matrix *matrix_sum(Matrix * mat1, Matrix * mat2);
 2 extern Matrix *matrix_add(Matrix * m1, Matrix * m2);
 3 extern Matrix *imatrix_add(Matrix * mat1, Matrix * mat2);
 4 extern Matrix *imatrix_add_inplace(Matrix * mat1, Matrix * mat2);
 7 extern Matrix *fmatrix_add_inplace(Matrix * mat1, Matrix * mat2);
 8 extern Matrix *dmatrix_add_inplace(Matrix * mat1, Matrix * mat2);
 9 extern Matrix *mat_alloc(int m, int n);
 44 extern void imatrix_format_lower(Matrix * mat);
 45 extern void imatrix_format_gen(Matrix * mat);
 46 extern void fmatrix_format_full(Matrix * mat);
 48 extern void fmatrix_format_lower(Matrix * mat);
 49 extern void fmatrix_format_gen(Matrix * mat);
 50 extern void dmatrix_format(Matrix * mat);
 51 extern void dmatrix_format_full(Matrix * mat);
 52 extern void dmatrix_format_lower(Matrix * mat);

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

 58 extern void ptr_default_print(void *ptr);
 59 extern void ptr_set_print(void (*newprint) ());
 60 extern void (*ptr_get_print(void))();
 61 extern void pmatrix_format(Matrix * mat);
 62 extern void pmatrix_format_full(Matrix * mat);
 72 extern void matrix_set_default_zval(Complex zval);
 76 extern void matrix_set_default_pval(void *pval);
 77 extern void *matrix_getp(Matrix * mat, int i, int j);
 85 extern void *matrix_getp_full(Matrix * mat, int i, int j);
 86 extern Matrix *matrix_invert(Matrix * mat);
 87 e98 extern void fmatrix_pprint(FILE * fp, Matrix * mat);
105 extern Matrix *matrix_minus(Matrix * mat);
106 extern Matrix *fmatrix_minus(Matrix * mat);
107 extern Matrix *fmatrix_minus_inplace(Matrix * mat);
113 extern Matrix *matrix_diff(Matrix * mat1, Matrix * mat2);
126 extern Matrix *matrix_sub(Matrix * mat1, Matrix * mat2);
137 extern Matrix *matrix_transp(Matrix * mat);
138 extern Matrix *dmatrix_transp(Matrix * mat);
141 extern Matrix *matrix_transform2(Transform2 transf);
142 extern Transform2 trans2_matrix(Matrix * mat);
143 extern Matrix *matrix_transform3(Transform3 transf);
144 extern Transform3 trans3_matrix(Matrix * mat);
145 extern Matrix *matrix_unit(int m, int n, Matrix_shape shape,
Vartype vtype);

One possible approach which might alleviate the previously mentioned
problem of manual wrapping of a huge number of C functions is to reduce
inter language communications and move burden of coding and data
translation to C side. In fact it is possible to write a C generic high-level
function corresponding to a part of Tina library, and then expose only this
function to Java using JNI. It is important to mention that Java will still have
the access to all C functions in the module through the generic function.

For example, consider the previously mentioned matrix manipulation functions
(157 of them), it is possible to write a generic matrix function which
encapsulate all particular functions with the following prototype

int matrix_manipulations(char *particular_function, list of generic
parameters);

where, particular_function is the Tina name of the function, list of
generic parameters is a chosen set of parameters which allows to pass
parameters to any function.

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

13. NeatVision development environment

The NeatVision is a Java written machine vision package, which is easy to use
and extend thanks to the features of Java language and package design itself.
More details about the NeatVision can be found in [2]

14. Integration of the TINA sequence tool and the NeatVision

The TINA sequence reader is a powerful set (tool) of C functions which allows
reading and manipulating of image sequences in different formats. Currently it
supports seven image file formats. As such it secures input data for all image
processing and analysis tasks within TINA package regarding image
sequence processing. The TINA sequence tool provides the following
functionality (excluding display functionality)

• reading and storing image sequence
• moving to the first frame in the sequence
• moving to the last frame in the sequence
• moving to the next frame in the sequence
• moving to the previous frame in the sequence
• getting the image data
• getting sequence length
• getting frame width
• getting frame height
• getting image scaling factors

We want to provide the same functionality to the NeatVision. In that regard it is
necessary to define a Java class containing native methods for accessing the
TINA functions. The following class definition was chosen for this purpose

public class seq {

 static {
 System.loadLibrary("seqNvTina");
 }

 // sequence manipulation methods

 public static native int seq_input(String filename,
 int filetype);
 public static native void moveto_firstframe();
 public static native void moveto_nextframe();
 public static native void moveto_lastframe();
 public static native void moveto_prevframe();
 public static native int get_sequencelenght();
 public static native int get_frameheight();
 public static native int get_framewidth();
 public static native void get_frame(int slika[]);
 public static native void get_scale(double scale[]);
}

• First step in exposing TINA sequence reading functionality to
NeatVision is to identify TINA source files and relating functions which
do this task in TINA, these are located at /../../Tina/src/tools/sequence

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

• Source files of interests in the above mentioned directory are seq_tool.c
and seq_io.c

• Use, rewrite and write necessary C functions in order to support
interface functions(methods) as declared in class seq. All these new
functions are marked and added at the end of original TINA source
files seq_tool.c and seq_io.c

• Use make utility and present Makefile to rebuild TINA library including
new C functions

After the previous steps are done, the rest is the application of JNI recipes
(Sections 1-9) as follows

14.1 Compile seq.java class

public class seq {

 static {
 System.loadLibrary("seqNvTina");
 }

 // sequence manipulation methods

 public static native int seq_input(String filename,
 int filetype);
 public static native void moveto_firstframe();
 public static native void moveto_nextframe();
 public static native void moveto_lastframe();
 public static native void moveto_prevframe();
 public static native int get_sequencelenght();
 public static native int get_frameheight();
 public static native int get_framewidth();
 public static native void get_frame(int slika[]);
 public static native void get_scale(double scale[]);
}

 % javac seq.java

14.2 Generate a header file for use by C

% javah –jni seq

There will be seq.h generated header file

14.3 Implementing the native functions in C code

Now that we have created the header file seq.h, we can write C code, which
implements native methods from seq class using functions from seq_tool.c
and seq_io.c. The file is named seq.c.

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

14.4 Building the shareable library

 Building on Linux (Solaris)

 %gcc -c -I/usr/java/jdk1.3.1_03/include \
 -I/usr/java/jdk1.3.1_03/include/linux seq.c

 %ld -G seq.o -o libseqNvTina.so \
 -L/home/prljacan/Tina/lib-linux \
 -ltinatools -ltinadraw -ltinafile -ltinavision \
 -ltinatv -ltinaXm -ltinaX11 \
 -ltinamath -ltinasys -L/usr/openwin/lib \
 -L/usr/X11R6/lib -lXm -lXt -lX11 \
 -lm -lc

 14.5 Driver Java program example

In order to test seq.java class and libseqNvTina.so library, we have developed
a simple driver Java program pogon.java which implements a simple
sequence reader and image display. In order to run the example one has to
compile pogon.java and run it

% javac pogon.java

% java pogon

Above mentioned files an instructions are available as:
seq_reader_example.tar.gz

14.6 Tina sequence reader in NeatVision

The full-blown version of the Tina sequence reader is implemented as a
NeatVision component and was made a part of the NeatVision environment.

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

15. Integration of the Tina Aorta Tracking tool and the NeatVision

The TINA aorta-tracking tool is a set of C functions, which allows tracking
(locating) of an aorta boundary in a sequence of MR images using active
contour model. As such the tool could be used for functional cardiac analysis.
The TINA aorta-tracking tool provides the following functionality

• entering initial model parameters
• changing initial model parameters
• searching the best model
• getting the best model parameters

We want to provide the same functionality to the NeatVision. In that regard it is
necessary to define a Java class containing native methods for accessing the
TINA functions. The previously defined seq.java class was expanded to
accommodate for aorta tracking functionality as follows

public class seq
{

 static {
 System.loadLibrary("seqNvTina");
 }

 //sequence reader functions
 public static native int seq_input(String filename,
 int filetype);
 public static native void moveto_firstframe();
 public static native void moveto_nextframe();
 public static native void moveto_lastframe();
 public static native void moveto_prevframe();
 public static native int get_sequencelenght();
 public static native int get_frameheight();
 public static native int get_framewidth();
 public static native void get_frame(int slika[]);
 public static native void get_scale(double scale[]);

 //aorta tracking functions
 public static native void input_model(String filename);
 public static native void parameters_getset(double p[],
 double pa[], double par[], int para[], int flag);
 public static native void search();
 public static native int get_model(int model[]);

}

• First step in exposing TINA aorta tracking functionality to NeatVision is
to identify TINA source files and relating functions which do this task in
TINA, these are located at /../../Tina/src/tools/smartROI

• Source files of interests in the above mentioned directory are sroi_tool.c
and sroi_io.c

• Use, rewrite and write necessary C functions in order to support
interface functions(methods) as declared in class seq. All these new
functions are marked and added at the end of original TINA source
files sroi_tool.c and sroi_io.c

• Use make utility and present MakeFile to rebuild TINA library including
new C functions

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

After the previous steps are done, the rest is the application of JNI recipes
(sections 1-9) as follows

15.1 Compile seq.java class

 % javac seq.java

15.2 Generate a header file for use by C

% javah –jni seq

There will be seq.h generated header file

15.3 Implementing the native functions in C code

Now that we have created the header file seq.h, we can add C code which
implements native methods from seq class using functions from sroi_tool.c
and sroi_io.c. (Functions regarding sequence manipulation were developed in
Section 14). The file is called seq.c.

15.4 Building the shareable library

 Building on Linux (Solaris)

 %gcc -c -I/usr/java/jdk1.3.1_03/include \
 -I/usr/java/jdk1.3.1_03/include/linux seq.c

 %ld -G seq.o -o libseqNvTina.so \
 -L/home/prljacan/Tina/lib-linux \
 -ltinatools -ltinadraw -ltinafile -ltinavision \
 -ltinatv -ltinaXm -ltinaX11 \
 -ltinamath -ltinasys -L/usr/openwin/lib \
 -L/usr/X11R6/lib -lXm -lXt -lX11 \
 -lm -lc

 15.5 Driver Java program example

In order to test seq.java class and libseqNvTina.so library , we have
developed a simple driver Java program pogon.java which uses sequence
reader and aorta tracking functionalities. In order to run the example one has
to compile pogon.java and run it

% javac pogon.java

% java pogon

Above mentioned files and instructions are available as:
aorta_tracker_example.tar.gz

15.6 Tina aorta tracker in NeatVision

The full-blown version of the Tina aorta tracker is implemented as a
NeatVision component and was made a part of the NeatVision environment.

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

16. Integration of the Tina NMR Segmentation tool and the NeatVision

The TINA NMR segmentation tool is a set of C functions, which allows
segmentation of brain tissues from MR images. The TINA NMR segmentation
tool provides the following functionality

• Fitting of a composite Gaussian density function to image histogram
• Computing probabilistic maps of brain tissues

We want to provide the same functionality to the NeatVision. In that regard it is
necessary to define a Java class containing native methods for accessing the
TINA functions. The previously defined seq.java class was expanded to
accommodate for NMR segmentation functionality as follows

public class seq
{

 static {
 System.loadLibrary("seqNvTina");
 }

 //sequence reader functions
 public static native int seq_input(String filename,
 int filetype);
 public static native void moveto_firstframe();
 public static native void moveto_nextframe();
 public static native void moveto_lastframe();
 public static native void moveto_prevframe();
 public static native int get_sequencelenght();
 public static native int get_frameheight();
 public static native int get_framewidth();
 public static native void get_frame(int image[]);
 public static native void get_scale(double scale[]);

 //aorta tracking functions
 public static native void input_model(String filename);
 public static native void parameters_getset(double p[],
 double pa[], double par[], int para[], int flag);
 public static native void search();
 public static native int get_model(int model[]);

 // NMR segmentation functions
 public static native void nmr_fit_proc();
 public static native void fit_param_dialog(double par[],
 int flag);
 public static native void rusenik_param_dialog(double
 par[], int flag);
 public static native void rusenik();
 public static native void push_seq_frame();
 public static native void probabilistic_map(double
 image[], int choice);

}

• First step in exposing TINA NMR segmentation functionality to
NeatVision is to identify TINA source files and relating functions which
do this task in TINA, these are located at /../../Tina/src/tools/nmr-
segment

• Source files of interests in the above mentioned directory are
nmr_segment_tool.c

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

• Use, rewrite and write necessary C functions in order to support
interface functions (methods) as declared in class seq. All these new
functions are marked and added at the end of original TINA source files
nmr_segment_tool.c

• Use make utility and present Makefile to rebuild TINA library including
new C functions

After the previous steps are done, the rest is the application of JNI recipes
(paragraphs 1-9) as follows

16.1 Compile seq.java class

 % javac seq.java

16.2 Generate a header file for use by C

% javah –jni seq

There will be seq.h generated header file

16.3 Implementing the native functions in C code

Now that we have created the header file seq.h, we can add C code which
implements native methods from seq.java class using functions from
nmr_segment_tool.c (Functions regarding sequence manipulation were
developed in Section 14 and aorta tracker in Section 15). The file is named
seq.c.

16.4 Building the shareable library

 Building on Linux (Solaris)

 %gcc -c -I/usr/java/jdk1.3.1_03/include \
 -I/usr/java/jdk1.3.1_03/include/linux seq.c

 %ld -G seq.o -o libseqNvTina.so \
 -L/home/prljacan/Tina/lib-linux \
 -ltinatools -ltinadraw -ltinafile -ltinavision \
 -ltinatv -ltinaXm -ltinaX11 \
 -ltinamath -ltinasys -L/usr/openwin/lib \
 -L/usr/X11R6/lib -lXm -lXt -lX11 \
 -lm -lc

OSMIA-01.2: Vision Systems Group, DCU

09/08/2002

16.5 Tina NMR segmentation in NeatVision

The full-blown version of the Tina NMR segmentation tool was implemented
as a NeatVision component and was made a part of the NeatVision
environment.

References

[1] http://www.niac.man.ac.uk/Tina/tina.html
[2] http://www.neatvision.com/
[3] http://www.eeng.dcu.ie/~whelanp/osmia/
[4] http://java.sun.com

	VSG Technical Report
	
	OSMIA-01

	Project
	Project number
	Deliverable number
	
	Contents
	1. Motivation
	
	
	TINA assessment

	2. The Java Native Interface
	3. Use of an interface library
	4. Function prototype from the TINA C Library (Example)
	5. Declaring the native function in our Java program
	6. Compiling the Java program
	7. Generating a header file for use by C
	8. Implementing the native function in C code
	9. Building the shareable library or DLL
	10. Running the program
	11. Quick summary of how to build the Tina linear equation solver
	12. General considerations of calling Tina C library functions from Java
	13. NeatVision development environment
	14. Integration of the TINA sequence tool and the NeatVision
	15. Integration of the Tina Aorta Tracking tool and the NeatVision
	16. Integration of the Tina NMR Segmentation tool and the NeatVision
	
	References

